A System Framework to Symbolically Explore Intel TDX Module
Execution

Pansilu Pitigalaarachchi
pansilu.2020@phdcs.smu.edu.sg
Singapore Management University
Singapore

Abstract

We present TDXplorer, the first dynamic symbolic analysis system
for Intel’s TDX Module, the software trusted computing base of
TDX. Without using TDX hardware, an analyzer function on top of
TDXplorer can not only apply dynamic analysis to control and in-
strument the TDX Module’s execution, but also carry out symbolic
execution for path exploration as well as security and functionality
reasoning. The two types of analysis are seamlessly integrated in a
way that symbolic execution is conducted directly upon the TDX
Module’s binary code and runtime states, which are shaped by
using dynamic analysis techniques. We implement TDXplorer on
Linux and measure its performance and correctness against execu-
tions on a TDX platform. Our case studies on symbolic modeling of
secure EPT creation and KeyHole region management demonstrate
that TDXplorer is a versatile and capable tool supporting various
analysis tasks.

CCS Concepts

« Security and privacy — Software and application security;
Trusted computing; « Theory of computation — Program
analysis.

Keywords

Intel TDX Emulation; Intel TDX Module; Dynamic Program Analy-
sis; Symbolic Execution

ACM Reference Format:

Pansilu Pitigalaarachchi and Xuhua Ding. 2025. A System Framework to
Symbolically Explore Intel TDX Module Execution. In Proceedings of the
2025 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’25), October 13—-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3719027.3765212

1 Introduction

The trusted computing base of Intel Trust Domain Extensions (TDX)
consists of not only hardware components such as SGX and Multi-
Key Total Memory Encryption (MK-TME) [43], but also a software
component called the TDX Module (or “the Module" for short). The
Module is the anchor for Trust Domain (TD) security and function-
ality, playing a similar role to a VMM managing regular virtual
machines. It is in charge of critical tasks, such as setting up the

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765212

Xuhua Ding
xhding@smu.edu.sg
Singapore Management University
Singapore

mappings for a Trust Domain to physical page frames and man-
aging the memory encryption keys. More notably, it is capable of
reading and writing a TD’s memory data in plaintext.

While the Module is shielded by a special CPU mode called the
SEAM VMX-root mode against direct accesses from the VMM and
TDs, it provides a set of APIs for them to invoke services. These
interfaces constitute the attack interface to the Module. A vulnera-
bility in its implementation or logical design could lead to a security
catastrophe because of its pivotal role. Driven by the concerns of
the Module’s security, some cloud service providers such as Google
and Microsoft have started to analyze and verify it [21, 33], based
on the source code released by Intel. To our knowledge, all exist-
ing efforts thus far are either static analysis at the source code or
fuzzing-aided dynamic analysis, hence are short of the rigor and
the reasoning power offered by dynamic symbolic execution.

To symbolically run the Module is nontrivial. Existing popular
dynamic symbolic execution engines such as KLEE [5], angr [42]
and S2E [9] are not amiable to the Module’s special system behavior
and demands. Similar to a VMM, the Module runs in Ring 0. As a
privileged software, the Module runs in the SEAM VMX root mode,
providing services to TDs such as setting up their mappings to the
physical page frames. By and large, the challenges are to provide
all desired hardware and software resources for the Module to run
properly, and to set up a foothold for another software to introspect
its runtime and control its executions according to the analysis
needs.

In this paper, we present TDXplorer, the first system framework
for dynamic symbolic analysis upon the Module. Instead of re-
sorting to a full-fledged hardware emulation, we retrofit a regular
virtual machine into an emulation environment for Intel’s TDX
system software, including the Module and its loader. By supplying
the desired system resources available in the host and emulating
those unavailable, the environment allows the TDX software to
properly execute on the native hardware (i.e., without undergoing
interpretation), achieving the same functionality as in the TDX
platform. Running beside the environment is TDXplorer’s analysis
component, which conducts both conventional dynamic analysis,
e.g., single-stepping and dynamic instrumentation, and symbolic ex-
ecution. The two types of analysis can be harmoniously interleaved.
Like dynamic analysis, the symbolic execution in TDXplorer is also
upon the Module’s binary and its runtime CPU and memory states.

We have implemented a prototype of TDXplorer on a desktop
PC running Linux. We rigorously measure its performance with
experiments and validate the correctness of symbolic execution
by running the generated test cases on a TDX server. The average
per-instruction costs in our experiments range between 28 microsec-
onds and 87 microseconds. Moreover, we present two case studies
to demonstrate how TDXplorer can help users achieve various

https://doi.org/10.1145/3719027.3765212
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765212

CCS 25, October 13-17, 2025, Taipei, Taiwan

analysis goals. In the first case study, we use symbolic execution to
model how the Module constructs the Secure Extended Page Table
(SEPT) for a TD; in the second case, we systematically examine how
the Module manages KeyHole pages, which store TD-relevant data
and receive MK-TME protection. Both cases show that TDXplorer
is a nimble and versatile tool to explore the TDX Module.

ORGANIZATION. Section 2 explains the TDX background rele-
vant to our design and analysis. Section 3 covers the related work.
Section 4 sketches TDXplorer at the high level, with the details elab-
orated in Section 5 and 6. Section 7 reports our prototype implemen-
tation, its functional coverage, identified issues and inconsistencies,
and evaluation results of its performance and correctness. We then
present two case studies in Section 8. The last section concludes
the paper.

2 Prerequisites

This section explains the TDX background techniques relevant to
TDXplorer. More detailed descriptions can be found in a survey
paper [8] and Intel’s specification [25].

2.1 TDX Architecture

Figure 1 illustrates the TDX system architecture [23] consisting
of the TDX system software (namely, the P-SEAM loader and the
Module), the VMM, and two TDs. The TDX systems software and
software in TDs run in a new CPU mode called the Secure Arbitration
Mode or the SEAM mode. All other software, including the VMM,
runs in the non-SEAM mode. While the Module supervises TDs,
the VMM supplies computing resources needed by the Module and
TDs, including the Logical Processors (LPs) and physical memory,
by issuing SEAMCALL instructions that make a SEAM mode switch
and invoke the corresponding handler of the Module. For instance,
TDH.MEM. SEPT . ADD SEAM call invokes the Module to add a physical
page to the secure EPT for the target TD. Similarly, a TD OS can
also invoke the Module’s service by issuing TDCALL instructions.
Whenever the Module completes a SEAM/TD call, it passes the
CPU to either the VMM or the TD kernel with the corresponding
mode switch.

= TDX Module enforced SEAM mode=y
access controls ™ ™

TD calt | TDexit] 1

VM launch VM resume

% TDX Module SEAM
P-SEAM Loader range
SEAM call/ SEAM call ret.

[Platform with TDX-enabled processors

1001 1)00J-UOU
— XWA WV3IS i XWA WV3S

SEAM call
TDX-Aware VMM [“SEAM call ret.

Figure 1: Illustration of TDX System Architecture.

2.2 Internals of The TDX Module

The Module’s code, global/local data and stack reside on the physical
pages in the SEAM Range which is only accessible when the CPU
runs in the SEAM VMX-root mode. Hence, the VMM cannot access
any page therein. The Module’s VA regions are statically mapped
to its SEAM range and are not changed at runtime.

The Module also uses physical pages outside of the SEAM range
to store TD metadata, secure EPT, etc. Although these physical

Pansilu Pitigalaarachchi and Xuhua Ding

pages are provisioned by the VMM at runtime, they are accessed by
the Module using predefined per-LP VA regions called the KeyHole
regions by Intel. Since their physical addresses are decided only at
runtime, the Module can update the page table pages that map the
KeyHole regions from the predefined VA range called the KeyHole
edit region. We highlight that the Module cannot update other parts
of its paging hierarchy as the mappings are not given.

As the KeyHole region’s physical pages do not receive the SEAM
mode-based protection, they are protected by using Intel’s Multi-
Key Total Memory Encryption (MK-TME) [43]. When MK-TME is
enabled, the MMU treats several leading bits of a physical address
specified in the current page table entry as the so-called KeyID
and uses the locally stored symmetric key corresponding to the
KeyID to encrypt and authenticate data stored to the page at this
physical address (or to decrypt and verify data loaded from it).
Hence, to protect its KeyHole region, the Module configures the
PTE in the KeyHole edit region with a proper KeyID during the
mapping creation. When there are multiple TDs, the Module assigns
different KeyIDs to them.

3 Related Work

Our work is akin to various efforts aimed at providing dynamic sym-
bolic execution tools for analyzing applications [5, 6, 36, 38, 42, 49]
and operating system kernels [9, 35]. These tools have demon-
strated effectiveness in vulnerability discovery and exploit genera-
tion [3, 7, 26, 27, 45]. TDXplorer also applies the re-hosting approach
which was introduced by Fasano et al. [18] and used in several
firmware analysis schemes [17, 31, 50]. In general, re-hosting means
that the target software is decoupled from its intended execution
environment with special hardware and exported into another envi-
ronment with commodity hardware to facilitate dynamic analysis.

The re-hosting approach always entails emulation, as the new
home of the software does not have the needed hardware features
to execute it. QEMU [4] and PIN [30] are two well-known general-
purpose emulation systems, using binary rewriting and just-in-
time compilation to emulate the target at the instruction level.
However, TDX emulation in TDXplorer, Intel’s KVM-based system
[48] proposed by Isaku Yamahata at the 2022 KVM Forum, and
Microsoft’s Cornelius [32] do not follow this generic approach. We
briefly explain Intel and Microsoft’s emulation below and defer the
comparison with TDXplorer to Section 4.2.4 after presenting our
approach.

VM-Enteri—YM___: : ':
E‘ TDX i H :
Cornelius VM-Exit‘; Module .: VMM : ePML4 ‘
'| P-SEAM |1 i[Shared Securd!

1 1| Loader |: tLEPT] L EPT L
Hyper-V VMM W ‘ KVM | JUTP, | TDX Module‘

(a) (b)

Figure 2: Illustration of TDX emulation architectures from
(a) Microsoft Cornelius [32] and (b) Intel’s proposal [48].

Existing TDX Emulation Projects. Figure 2 illustrates the ar-
chitectures of Microsoft Cornelius [32] and Intel’s TDX emulation
[48]. Both aim to enable experimentation and testing of the Module

A System Framework to Symbolically Explore Intel TDX Module Execution

without requiring actual TDX hardware. As a host application, Cor-
nelius loads the P-SEAM loader into the VM. It then executes the
P-SEAM loader in the VM to load the Module and runs the Module
in VMX non-root mode, which is referred to as VM-hosting in this
paper. In Intel’s approach, dubbed in this paper as VMM-hosting, the
Module executes in VMX root mode (i.e, inside the VMM), similar
to its location in a TDX platform, except that there is no SEAM
mode support. This setup allows the relocated Module to retain
the capability of managing TDs, which are in the form of regular
VMs. The KVM still plays the role of VMM to the Module, as in
the TDX platform, and also acts as the intermediary between the
TD and the Module. Specifically, the KVM invokes the Module’s
TDX API via a JUMP and the control is returned to KVM in the same
manner upon completion. TD execution is supported by merging
the KVM-managed shared EPT and the Module-managed secure
EPT into a single EPT tree.

TDX Module and TEE Firmware Analysis. Recent work has
examined the Module security. Wilke et. al. demonstrated a side
channel attack targeting the Module itself [47], while another attack
compromises TD confidentiality and integrity [40]. Google and Mi-
crosoft have independently assessed the TDX architecture [21, 33];
Google used static analysis tools [20, 46] and Microsoft combined
manual source code review with dynamic analysis using Cornelius
[32]. To the best of our knowledge, dynamic symbolic analysis has
not yet been applied to the module. For AMD SEV-SNP, Paradzik
et. al. [34] used Tamarin proof [41] to formally verify its software
interface [1]. For Arm CCA [2], Fox et al verified the Realm Man-
agement Monitor (RMM) firmware [19] using interactive proofs
and CBMC [28], a static symbolic execution tool.

4 Overview

In a nutshell, we use a two-pronged approach to enable dynamic
symbolic analysis for the Module. Independent of the Cornelius
project, we propose and design our own VM-hosting emulation.
TDXplorer places the Module into a special bare-metal environment
so that its binary runs on the CPU without undergoing interpreta-
tion and is subject to dynamic analysis such as tracing. On top of
that, TDXplorer performs symbolic execution of the Module’s bi-
nary using its runtime CPU and memory state in that environment,
without involving any intermediary representation.

In the following, we sketch TDXplorer at the high level by ex-
plaining the primary design challenges, the system architecture, a
comparison with related TDX emulation work, and a workflow ex-
ample. To avoid verbosity, we use the “TDX software" to collectively
refer to the Module and the P-SEAM loader.

4.1 Design Considerations

In addition to those common challenges in designing a dynamic
symbolic execution engine, we face three issues stemming from
the Module’s unique attributes. First, the computing environment
needs to be execution-faithful so that the Module’s instructions
run smoothly and function properly as if in a real TDX platform.
The challenge has a twofold implication. (i) The environment must
offer hardware features that the Module depends on. For instance,
the Module supposes itself to be loaded in a continuous physical
address range; when the Module updates its own paging hierarchy,

CCS 25, October 13-17, 2025, Taipei, Taiwan

the changes should take effect immediately through the MMU.
(ii) The environment must provision both software and system
states for the proper functioning of the Module. For instance, when
serving certain SEAM calls, it may need a TD as the service target;
it may need additional physical pages to create the secure EPT.

The second issue is that the environment is expected to be event-
faithful. It should emit alerts whenever the Module’s execution
would trigger an exception on a real TDX platform. For instance, if
the Module on a TDX server writes to a page using an unconfigured
MK-TME Key-ID, the hardware will throw out an exception. There-
fore, the environment needs to automatically catch those software
errors that manifest as hardware exceptions on a real machine.

Thirdly, because of the Module’s Ring 0 privilege and SEAM
VMX root mode execution, it is challenging to make command-and-
control over its execution to meet the runtime demand from the
symbolic analysis. The requirement is not only about accessing the
Module’s CPU context and runtime memory, but also controlling its
execution, e.g., to take a True branch as well as to save and restore
its state during path exploration.

4.2 System Architecture

We tackle the challenges with a coalescence of system and software
designs. TDXplorer runs on a host OS supporting CPU and MMU
virtualization. From the system perspective, it consists of two com-
ponents: the SEAM emulation environment where the TDX system
software runs on the hardware; and the Monitor, which governs
and analyzes the Module’s execution dynamically and symbolically.
The two components with their respective software composition
are depicted in Figure 3, where the analyzer function is the user’s
code that invokes and controls TDXplorer for the user’s task.

Monitor VM-Enter § SEAM Emulation Environment

i TDX System Software 3
analyzer | | Symbolic || ym-gyit | |TRXPlOrer— o P-SEAM]| !
function | | Interpreter |{————— | Aegent Module | | Loader | !

T H ;

Host 08 Kernel-Helper i (Extended Page Tables “

Figure 3: TDXplorer System Architecture. Shadowed boxes
represent its software components.

4.2.1 SEAM Emulation Environment. The environment is, in essence,
a kernel-less virtual machine comprising one CPU core in the VMX
non-root mode and a pool of physical pages. With CPU and MMU
virtualization, it emulates those indispensable hardware proper-
ties of the genuine SEAM environment for the Module execution,
such as continuous physical memory region, secure memory with
MK-TME, execution on multiple logical processors and context
switches between the Module and VMM/TDs. The software run-
ning inside it includes the TDX software and the TDXplorer Agent.
We need to support the P-SEAM loader execution because it loads
the Module and prepares the latter’s execution. The Agent, as one
of TDXplorer’s software components, emulates some of the SEAM
hardware features that cannot be achieved using virtualization, in-
cluding special instructions in TDX, VT-x hardware virtualization
and access to the TDX-relevant model-specific registers. It also
serves as the Monitor’s proxy to control the environment.

CCS 25, October 13-17, 2025, Taipei, Taiwan

The vCPU core is scheduled by the Agent, which can pass control
to the Module or the P-SEAM Loader and reclaim it using hardware
or software breakpoints. All three run in Ring 0 and hence have the
privilege to configure their respective Guest Page Tables (GPTs).
Note that owing to Intel’s virtualization techniques, the page tables
used by the TDX software in the real SEAM environment are the
same as the GPTs in our emulation environment. The Agent makes
address space switches according to vCPU scheduling. The details
of the emulation environment are elaborated in Section 5,

4.2.2 TDXplorer Monitor and Kernel-Helper. Running on top of
the host OS, the Monitor is the host application of the emulation
environment. Namely, it is the one that launches the environment as
a virtual machine. TDXplorer maps the entire physical memory of
the emulation environment to the Monitor for its runtime accesses.
Since the Monitor only has the userspace privilege, we design the
Kernel-Helper as a host kernel module to provide the host-level
services needed by TDXplorer, e.g., to set up the desired address
mappings for the Monitor to access the Module’s virtual memory.
The Monitor initially sets up the emulation environment with the
Kernel-Helper’s assistance, and starts its execution from the P-
SEAM loader. Based on the runtime analysis needs, it manages the
Module’s execution via the Agent. It also includes the symbolic
interpreter component which maintains runtime symbolic states,
including path constraints and updates them when interpreting
symbolic instructions.

4.2.3 Monitor-Environment Transition. Since the Monitor is the
parent application of the environment, they share the same phys-
ical CPU core and occupy it alternately. The transitions between
them are essentially VM-Enter and VM-Exit. The former starts or
resumes the execution of software in the environment and the latter
returns control back to the Monitor. These transitions are used for
two purposes: to facilitate the Monitor’s control over the environ-
ment through the Agent; and to emulate SEAM/TD calls where the
Monitor plays the roles of the VMM and the TD kernel, respectively.
To transition to the environment, the Monitor configures the
vCPU of the emulation environment via the Kernel-Helper to es-
tablish the initial CPU state, specifying the Agent as the entry.
The Kernel-Helper then schedules the environment’s vCPU for
VM-Enter with VMENTER or VMRESUME instructions. As a result, the
Agent is dispatched on the vCPU. Similarly, the Agent is also the exit
point of the environment. It captures the ending of the Module’s ex-
ecution, prepares all the data, including return values, and triggers
a VM-Exit, which is forwarded to the Monitor by the host kernel.

4.24 Comparison with related TDX emulation work. In the follow-
ing, we compare TDXplorer, Intel’s emulation [48] and Cornelius
[32] from several angles.

Emulation Design and Goals. Intel’'s VMM-hosting approach
eliminates the need for VMM and TD emulation by supplying live
states of the KVM and TDs. Compared with TDXplorer and Cor-
nelius’s VM-hosting approach, it facilitates relatively free-formed
TDX analysis instead of being prescribed by TDX APIs. Nonetheless,
VMM-hosting results in less flexibility for a user-space application
to mould the desired VMM/TD states. Between Cornelius and TDX-
plorer, the former focuses on testing SEAM and TD calls from the
outside, while the latter aims for rich mid-call dynamic analysis

Pansilu Pitigalaarachchi and Xuhua Ding

with fine-grained control and visibility into the Module’s runtime
states tailored for security-centric analysis. The architectural differ-
ence also implies different ways to emulate SEAM/TD calls. With
VMM-hosting, SEAM calls are emulated as jumps between the KVM
and the Module, and TD calls are emulated as hypercalls. With
VM-hosting, both SEAM calls and TD calls are emulated as VM
entering facilitated by the KVM. Cornelius gains control at the end
of SEAM/TD calls by trapping the Module’s SEAMRET, VMLAUNCH
and VMRESUME instructions.

Special Instruction Emulation. Contrary to TDXplorer’s spe-
cial instruction emulation by TDXplorer Agent, Cornelius handles
their emulation in the host-side application, relying on hardware-
triggered VM-exits due to such instructions. Root-mode instruc-
tions like PCONFIG naturally trap and Cornelius also forces traps
on RDMSR and WRMSR by patching the Module’s source code. This
design, however, leads to increased VM-exit overhead in Cornelius.
Intel’s approach does not explicitly describe the handling of such
instructions. However, the Module’s root-mode execution may al-
low native execution of some privileged instructions, reducing the
emulation and transition overheads.

Faithfulness to security critical TDX functionality. Similar to
Intel’s approach, Cornelius executes the Module with no real MK-
TME, and the secure pages are not encrypted. It simulates MKTME
to pass Module checks but doesn’t enforce its semantics, making it
unable to detect MKTME-related violations. TDXplorer, though it
also runs the module with no actual encryption of the secure pages,
provides faithful MKTME emulation, enabling such detection. In
Intel’s approach, the merged EPTs are a divergence from the TDX’s
secure EPT model, limiting their value for security-critical analysis.
Access to Runtime Module states. TDXplorer’s in VM agent,
sharing the Module’s address space, accesses both statically and
dynamically mapped Module memory. Furthermore, the Module’s
statically mapped memory is also mapped into TDXplorer’s host
process, allowing access via the Module’s own virtual addresses
with no additional translation. Cornelius accesses Module mem-
ory only after the host regains control, either upon a SEAM/TD
call completion or during an uncontrolled VM-exit, and relies on a
library API that uses hypervisor services to resolve guest virtual
addresses on demand. While Intel’s approach provides no explicit
details, the shared address space likely enables the VMM to ac-
cess Module memory directly. Without requiring any additional
real-time memory synchronization between TDXplorer’s SEAM
environment and its host-side counterpart, the setup in TDXplorer
enables seamless integration with a host-side interpreter.
Support for Dynamic Analysis. Traditional dynamic analysis
has not been a focus of Cornelius, nor is such support discussed in
Intel’s approach. TDXplorer on the other hand supports runtime
introspection during SEAM/TD calls, enabling the use of standard
dynamic analysis primitives such as debug breakpoints, INT3 break-
points and single-stepping.

4.3 An Example of Analysis Workflow

The user’s analyzer function steers TDXplorer to carry out analysis
steps toward his/her goal. A symbolic analysis can start anytime
during the Module’s native execution. The example below illustrates
the main steps in a workflow (Figure 4). Consider the TD virtual

A System Framework to Symbolically Explore Intel TDX Module Execution

processor state (TDVPS) update during TD initialization. The goal
is to obtain the path constraint and derive the Module’s validations
applied to the input physical page address when adding a new
physical page to the TDVPS.

Monitor g'START 5'@ Py END n ISymbolic)
Symbolic Interpreter —T I nterpretation
3 3 [Native
TDXplorer Agent % % Execution
m X

TDX Module Hardware event

Figure 4: An exemplary analysis workflow.

1. The Monitor issues the first SEAM call, TDH. VP.CREATE, with
all concrete arguments. The Agent receives the SEAM call and
dispatches the Module to execute the corresponding handler. When
the Module returns, the Agent regains control and forwards the
returned value and the Module’s CPU state to the Monitor. (native
execution for state initialization)

2. The Monitor sets up the necessary contexts for the second SEAM
call, TDH. VP . ADDCX, and invokes the interpreter to symbolize the
SEAM call argument for the new TDVPS physical page address.
(setup symbolic execution)

3. The interpreter begins single-stepping the Module. For instruc-
tions involving symbols, it interprets them and updates the Mod-
ule’s CPU state and memory accordingly; for those without symbols,
it dispatches them to the Agent so that they are executed within
the emulation environment by the hardware. (symbolic execution)
4. The execution stops if the native execution triggers a hardware
event indicating a security policy violation or the interpreter detects
an error. The corresponding path constraint and symbolic states are
reported. If no hardware event occurs, the Monitor regains control
once the SEAM call returns. (termination and results output)

The workflow shows TDXplorer empowers the user’s analyzer
to weave symbolic execution with dynamic binary analysis. The
latter is applied to attain the desired state, whereby the former
carries out symbolic exploration.

5 SEAM Emulation Environment

In this section, we elaborate on the design of the SEAM emulation
environment, which provides the Module with the expected view
of its physical memory, the virtual address space(s), the logical
processors (LPs) and the platform configurations.

5.1 Physical Memory

As the CPU core of the emulation environment operates in the
VMX non-root mode, the Module and the P-SEAM loader run on
the guest physical memory whose addresses are mapped to the host
physical addresses by the EPTs managed by the host kernel.

SEAM-Memory. To satisfy TDX’s SEAM-memory requirement,
the Kernel-Helper picks a 32-MB aligned guest physical address
(GPA) region sized 2™ bytes where m < 30. It then sets up the EPTs
for the emulation environment so that the chosen GPAs are mapped
to physical page frames in the host. Furthermore, the Monitor splits
the GPA region into two halves following the TDX specification, for
the P-SEAM loader and the Module, respectively. The GPA range is

CCS 25, October 13-17, 2025, Taipei, Taiwan

stored as part of the emulated TDX platform state and, when needed,
is returned to the P-SEAM loader or the Module through emulation
as the contents in the MSRs, which store the platform’s SEAM-
memory base and size. As a result, the SEAM-memory emulation
transparently meets the Module’s and the P-SEAM loader’s needs.
Non-SEAM Memory. The Kernel-Helper maps a pool of physical
pages to the emulation environment as the Non-SEAM memory
for the Module and the VMM to share, e.g., to exchange data in
SEAM calls. It also creates the EPT mappings for a 1-GB aligned
GPA region used as the secure memory for TDs and the Module’s
TD-related data objects. Additional EPT mappings allocate a GPA
region for the Agent’s memory, including the pages required for
the GDT and IDT of the emulation environment. Figure 5 illustrates
an example memory layout.

VMM & Module

Agent’smem. shared mem.
[1 [1

T
GPA 0 32 MB

TD Mem. &

SEAM-Memory Module’s TD data

32MB+2™B 1GB

Figure 5: Memory layout in the emulation environment con-
forming to TDX’s memory requirements (with m < 30).

5.2 Address Spaces

Playing the role of Intel’s NP-SEAM loader, the Monitor creates
the page tables for the P-SEAM loader and invokes its execution.
The P-SEAM loader then loads the Module into the designated GPA
region in the emulation environment and sets up the Module’s
page tables. The Monitor also creates the page tables for the Agent
to satisfy that 1) the Agent’s code and data are separated from
the TDX software to avoid undesired runtime interference; and 2)
the Agent can directly access the TDX software’s virtual address
spaces without software-based page table walking. Specifically, the
Monitor initiates the Agent’s PML4 page in two steps. It first clones
all PML4 entries of the TDX software’s PML4 pages. The cloning
essentially fuses the TDX software’s address space into the Agent’s
so that any mapping updates made by the TDX software at the
lower-level page table entries! immediately take the same effect on
the Agent. Next, it chooses an unused PML4 entry to construct the
remaining hierarchy, which essentially assigns the Agent a 512 GB
address space not occupied by the TDX software. The three paging
hierarchies are shown in Figure 6.

TDXModule TDXplorer Agent ~ P-SEAM Loader
2 2
,,,,,,,,,,, stone—| % |- ctone-| %
7| K
1! { zz Mapped VAs
S RS =M
=4 S apped GPAs
@ @
Pl Pl Emulation Enwv.
V7 -V VA space
L3 £3 1 ¥ T l
[| [Module Range [P-SEAM Ldr Range GPA space

Figure 6: Three separated paging hierarchies in the emulation
environment.

!Note that the TDX software does not modify mappings at the 512-GB level.

CCS 25, October 13-17, 2025, Taipei, Taiwan

5.3 Special Instruction Emulation

As the hardware of the emulation environment does not support

TDX, certain types of special instructions cannot be executed therein.

To make the emulation transparent to the TDX software execution,
TDXplorer emulates those instructions that are incompatible with
the environment.

The binaries of the P-SEAM loader and the Module are scanned
offline to extract special instructions. Those include new TDX in-
structions, MSR access instructions, CPUID, PCONFIG, instructions
for VMX and MK-TME. Then, the two binaries are instrumented
to install a software probe, i.e., INT3 instruction, at the first byte
of each of these instructions. To aid instruction emulations, the
instrumented instructions are backed up in the data region shared
between the Agent and the Monitor with their operands (if any)
extracted.

When the INT3 exception is triggered during the TDX software
execution, the Agent gains CPU control. If it is due to special instruc-
tion emulation, it emulates the original instruction before passing
the control to the next instruction. The instruction emulation uses
the information shared by the Monitor, such as the saved instruction
operands, software-maintained TDX-compatible model-specific reg-
ister states and CPU features as needed to do the emulation. As the
majority of the special instructions are used to check or load the
hardware status and configuration, their executions are not very
closely related to the analysis goals.

54 MK-TME Emulation

As MK-TME-based memory encryption is at the core of TDX, TDX-
plorer is geared to emulate its impacts on the Module execution. The
Module engages MK-TME in three ways: (1) It commands MK-TME
to set up encryption keys for TDs and itself. (2) When it creates
its mappings for non-SEAM pages, it sets up to 16 of the most
significant bits in the physical address field of page table entries to
specify the KeyIDs used for memory encryption. (3) Its accesses to
the aforementioned pages undergo MK-TME’s crypto operations.
We emulate the behaviors accordingly.

Key Initialization. The Agent emulates relevant RDMSR instruc-
tions that check whether the underlying hardware supports MK-
TME, and the PCONFIG instruction, which creates an MK-TME key
for a given KeyID on the platform. The emulation feeds the Module
with the CPU states, indicating successful instruction execution so
that its execution does not abort.

KeyID Configuration. The Agent intercepts and mediates the
Module’s accesses to its page table pages available for dynamic
mappings. This special set of pages is mapped to the Module’s
KeyHole edit region in TDX’s terminology, which is a 512-GB aligned
VA region. The Monitor sets the Module’s PML4 entry for the
KeyHole edit region as non-present so that the Module’s access to
its paging structure is then trapped to the Agent. When the Module
intends to map a physical page p to a virtual page v using KeyID
k, the Agent saves p, = (v, p, k) in its VA-Key table, and updates
the PTE to create the desired mapping without any KeyID in order
to be compatible with the host platform’s MMU. It sets page v as
non-present to trap any access to the newly mapped page. Note
that monitoring of the KeyHole edit region updates also allows

Pansilu Pitigalaarachchi and Xuhua Ding

for analysis over the usage of dynamic VAs. Figure 7 depicts the
mapping setup.

Module PML4 —5— r ’ a""'i
PT for KeyHole PT for KeyHole
Agent PML4 edit
R/W Legends:
PDPT,PD i it regi
g mapping for KeyHole edit region
walk ,_|:' pping y g
1~ mapping for KeyHole

-

Figure 7: Mappings to KeyHole and KeyHole edit region. P = 0
means page non-present.

Secure Memory Access. When access to a non-present virtual
page v is trapped to the Agent, it first locates the corresponding
physical page number p, and operates according to the access type.

e For a write access, the Agent finds p = (v, p, k) from its VA-
Key table and inserts (or updates) 7 = (p, k) in its PA-Key table
which indicates that MK-TME protects p with KeyID k. It also
checks whether p is mapped to other VAs. If so, it updates the
Module’s paging structure to mark all those VAs as non-present
to trap accesses to them. Note that this step is necessary because
MK-TME does not detect or prevent dual mappings.

o For aread access, the Agent retrieves p = (v, p, k) from its VA-Key
table and 7 = (p, k’) from its PA-Key table. If k = k’, it restores the
present bit in the PTE for v and re-runs the instruction. Otherwise,
the Agent halts the Module as the KeyID used in read does not
match the KeyID used in its prior write, and reports the event to
the Monitor.

Essentially, TDXplorer ensures that a VA can be used to read a page
protected by MK-TME only when the KeyID in the VA’s mapping
is used in the immediately preceding write to the page.

5.5 Logical Processor Emulation

One of the Module’s main tasks is to manage CPU resources, in-
cluding logical processors (LPs) and TD vCPUs. Since the Module
treats vCPUs as VMCS objects without actually running on top of
them, there is no need for TDXplorer to emulate vCPUs. However,
an LP is a physical resource that is not available in the emulation
environment. More importantly, the Module retrieves TD-specific
data from the per-LP state. It is thus necessary to emulate LPs for
the Module to manage and “run" on them.

Initialization. Initially, the emulation environment makes the
Module perceive that it is given n different LPs, where n is a TDX-
plorer configuration parameter and set to 4 by default. The Monitor
prepares n CPU contexts and state objects for LP emulation and
invokes the P-SEAM loader to initiate them one by one. When the
P-SEAM loader queries a given LP, the Agent intercepts the CPUID
instruction in use and emulates its return with the corresponding
context and state. The execution of the P-SEAM loader eventually
produces n per-LP states for the Module. A per-LP state includes
a VMCS object, page table mappings (for stack and data regions),
and mappings related to the dedicated KeyHole region.

Per-LP Runtime Update. To ensure the emulated per-LP state is
always consistent with the Module execution, the Agent intercepts

A System Framework to Symbolically Explore Intel TDX Module Execution

the Module’s LP state modifying instructions (e.g., VMWRITE) and
emulates them by updating the corresponding objects accordingly.
The Monitor also initiates and maintains the vCPU-LP binding to
remain consistent with the Module’s handling of TD vCPUs. To ini-
tiate a binding, it makes a SEAM call destined to a chosen LP so that
the Module creates a TD vCPU and binds it with the given LP. When
making a TD call, it also ensures that it picks the LP hosting the
corresponding TD vCPU as the target LP for the Module to occupy.

5.6 SEAM Call and TD Call

Supporting the issuance and handling of SEAM/TD calls is central
to TDXplorer. From the functionality perspective, the Module fol-
lows the SEAM calls to manage TDs, including their creation; from
the security perspective, these TDX API calls constitute the primary
attack vectors the Module exposes. As described previously, the
Monitor emulates the call invocation and return using the monitor-
environment transition and the Agent serves as the entry and exit
gates of the environment. We elaborate below on the details about
the needed system resources provisioned to the Module’s handlers.
LP Selection. When the Monitor emulates a SEAM/TD call invo-
cation, it informs the Agent about the target LP for the Module’s
upcoming execution to occupy. Hence, the Monitor and the Module
always have the same view of busy and idle LPs.

State Preparation for SEAM Call. The Monitor prepares the
SEAM transfer VMCS object as specified by the TDX specification.
This VMCS is passed to the Agent as the initial CPU context for
the Module’s SEAM call handling. It is not the VMCS for monitor-
environment transition. The former is never applied to any CPU
core, while the latter is applied to the emulation environment’s
core. The Agent also switches CR3 to the Module’s address space
before performing a far-jump to the desired Module entry point.
State Preparation for TD Call. To make a TD call meaningful, the
Monitor has to create and launch TDs using a sequence of SEAM
calls according to the TDX specification. Note that it is unnecessary
for TDXplorer to run any TD with a kernel or application, because a
TD appears to the Module as a collection of data, including its CPU
state and memory. It is thus sufficient for analysis if the Module’s
view towards a TD is genuine. For this purpose, the Agent inter-
cepts the TD-Enter event by emulating the VMLAUNCH or VMRESUME
instructions. Specifically, it emulates the CPU context switch from
the Module to the TD and then exits from the emulation environ-
ment so that the Monitor gets control. When issuing a TD call, the
Monitor prepares the VMCS representing the TD vCPU. Similar to
the SEAM call emulation workflow, the Agent sets up the scene for
the Module’s TD call handler to run.

Call Return. The Agent intercepts special instructions denoting
the end of an API call. For VMLAUNCH and VMRESUME, it updates the
TD vCPU, emulates the CPU context switch and passes control to
the Monitor as described earlier. For SEAMRET, the Agent updates
the SEAM transfer VMCS object and passes control to the Monitor.

6 The TDXplorer Monitor

This section explains how the Monitor manages the emulation
environment and how symbolic execution is carried out.

CCS 25, October 13-17, 2025, Taipei, Taiwan

6.1 Accessing Emulation Environment

The Monitor accesses the environment’s memory for two purposes.
One is for the environment setup and management. Since this task
requires access to all pages in the environment, TDXplorer creates
for the Monitor a special VA region which has the identical layout
and size of the environment’s GPA space. With the assistance of
the Kernel-Helper, a page in the VA region and the corresponding
GPA of the environment are mapped to the same physical pages.

The other purpose is to read and write the Module’s virtual
memory to meet analysis needs. Leveraging the fact that the Module
uses static VA-to-PA mappings for its SEAM memory, TDXplorer
clones all the static mappings into the Monitor’s space. As a result,
the Monitor can directly reference the Module’s VAs under its static
mappings. To access the Module’s dynamically mapped memory
(i.e., the KeyHole regions), the Monitor interacts with the Agent at
runtime through a shared memory buffer.

6.2 Symbolic Interpreter

As part of the Monitor, the symbolic interpreter interprets the Mod-
ule’s instructions involving symbolic operands. The interpretation
may lead to updates in the symbolic states maintained by the Mon-
itor and also in the Module’s native runtime memory and CPU
context.

6.2.1 Memory and CPU Register Model. The interpreter operates
on the Module’s virtual memory and CPU registers. In its local stor-
age, it maintains a set of data structures representing the Module’s
current symbolic state as shown in Figure 8. The state includes, if
any, the symbolic data and its associated metadata, including sizes
and locations, i.e., virtual addresses and/or registers. As symbolic
data is never used in executions in the emulation environment, their
VA locations appear like “holes" in the Module’s runtime memory.

The interpreter, as part of the Monitor, accesses the Module’s
virtual memory using the native VAs. The Module’s CPU state
is reported by the Agent after trapping the Module’s execution.
When interpreting an instruction, the interpreter references the
Module’s virtual memory or CPU context for concrete operands
and references the symbolic state for symbolic ones.

Symbuolic Interpreter's VA space < f
D TDX Module’s VA space g
[R — |
Saved Symbolic Interpreter's U @ @
TDX Module’s data structures for | Tpx Module’s memory in SEAM Env. |
CPU state symbolic data

: o . :
D Concrete region % Symbolic region

Figure 8: The memory and CPU model in TDXplorer

6.2.2 Single-Stepping. The interpreter starts to single-step the
Module binary after being invoked by the analyzer function, which
specifies the entry VA. In a nutshell, the interpreter fetches an
instruction from the Module’s runtime memory and analyzes all

CCS 25, October 13-17, 2025, Taipei, Taiwan

operands to determine if it is symbolic. Symbolic ones are inter-
preted and non-symbolic ones are dispatched to the emulation
environment for the hardware to execute.

Instruction Parsing. Since the memory and CPU model used
in symbolic execution is consistent with the Module’s runtime, it
is straightforward to determine if an instruction is symbolic. The
interpreter extracts the instruction’s register and memory operands
to check against the symbolic states.

Instruction Interpretation. The interpreter updates the sym-
bolic state and the Module’s runtime according to the instruction’s
opcode and operands. One issue in instruction interpretation is
to efficiently and effectively handle the flag register RFLAGS. We
follow the approach used in angr [42] and KRover [35] to postpone
emulating the flag-setting effect until a flag-dependent instruction
such as JZ is fetched.

Single-Instruction Native Execution. To avoid the expensive
costs of VM enter and exit during single-instruction native execu-
tion, TDXplorer runs the interpreter and the Agent on separate
CPU cores during symbolic execution and provides shared memory
for them to get synchronized. To dispatch a concrete instruction to
the emulation environment, the interpreter exports to the shared
memory the Module’s CPU state as the latest outcome of interpreta-
tion. The Agent turns on the single-step mode in the environment’s
core and runs the instruction with the given CPU state. Upon the
instruction completion, the Agent turns off single-step mode and
returns the updated register state to the interpreter.

6.2.3 Path Selection and Exploration. When interpreting condi-
tional branch instructions with symbolic flag bits, TDXplorer sup-
ports two ways of path selection. If the involved symbol is seeded,
the interpreter evaluates the symbolic flag with the seed to deter-
mine the branching direction. Otherwise, it checks with the con-
straint solver about path constraint satisfiability. If both branches
are satisfiable, it calls back the analyzer to decide a path with the
default option of making a random decision. Exploration of a path
terminates when the interpreter encounters SEAMRET, VMLAUNCH
or VMRESUME instruction, which indicate a normal completion of a
SEAM/TD call, or an error, such as UD2 instruction.

Offline Path exploration. Similar to angr [42], QSYM [49], TDX-
plorer supports offline path exploration, i.e., exploring one path
at a time. The exploration uses the depth-first search strategy to
cover all valid paths. TDXplorer allows the user’s analyzer function
to determine the runtime moment to start path exploration. To
prepare for path exploration, the interpreter backs up the symbolic
state and turns the Module’s virtual memory to read-only. Concrete
writes to the Module’s pages are made on a copy of the original one,
following the same copy-on-write approach used in KLEE [5] and
process forking. Upon completion of the path, those page copies
are discarded and the same initial state is used for the next path.

6.3 Analyzer Function

Recall that the TDXplorer Monitor contains an analyzer function as
shown in Figure 3. The function is programmed by the TDXplorer
users for their analysis tasks. It is empowered by the architectural
features of TDXplorer to combine traditional dynamic binary anal-
ysis techniques with symbolic analysis in order to make complex

Pansilu Pitigalaarachchi and Xuhua Ding

binary-level reasoning. Our case studies in Section 8 present two
such examples.

TDX State Setup. The function can issue SEAM calls and/or TD
calls to establish the desired TDX state before starting symbolic
execution. During runtime, it can also set hardware breakpoints
in the Module’s native execution to detect fetching of a concerned
instruction or access to an object. It is at the function’s discretion
to kickstart symbolic execution either in the midst of the Module’s
native execution by symbolizing runtime data or by issuing a SEAM
call with symbolic arguments.

Symbol Declaration and Concretization. TDXplorer allows
symbolization of the Module state at any point during the sym-
bolic analysis. The interpreter provides APIs for defining register
or memory symbols. The analyzer function can trace Module ex-
ecution and dynamically define new symbols based on analysis
demands. When necessary, it can query the constraint solver’s APIs
to evaluate a symbolic expression and concretize some symbolic
data.

Accessing Module Runtime State. Running within the Monitor’s
address space, the analyzer function makes direct access to the Mod-
ule’s runtime state. It can reference the statically mapped Module
memory via the Module’s own VAs and uses the Module’s struct def-
initions to access object members. Accessing dynamically mapped
keyholes and the CPU state is through the interpreter’s APIs. Ad-
ditional APIs from the Monitor provide access to Module-specific
states such as KeyHole state, LP emulation-related metadata, and
the Module’s page tables. The analyzer function can insert call-
backs to the interpreter to monitor events such as the page faults
triggered by the Module’s access to the KeyHole edit region.

7 Implementation and Evaluations

We implement a prototype of TDXplorer on a Linux PC running
kernel version 5.15.0. The machine is equipped with a 13th Gen
Intel® Core™ i9-13900 CPU (800 MHz-4200 MHz), 64 GB RAM and
2.8 TB disk space. All TDXplorer experiments are conducted on
this platform.

7.1 Prototype

The TDXplorer prototype comprises approximately 21.7K lines of
C/C++ SLOC and 241 lines of inline assembly code. Component-
wise, the Agent, kernel helper and the interpreter are implemented
in 1.2K, 305, and 11.9K lines of code, respectively. We use Z3 [39]
version 4.8.14 as our constraint solver and Dyninst [37] version
12.0.0 for binary disassembly and instruction parsing. We open-
source TDXplorer and make it persistently and publicly available,
along with build instructions and sample analyzer functions, at
https://github.com/KRoverSystems/TDXplorer.

We build the TDX system software stack following Intel’s guide-
lines [10, 16], compiling the P-SEAM loader (v1.5.00) and Module
(v1.5.01) from source, yielding binaries of 90 MB and 397 MB, re-
spectively. Our pre-processing identifies and instruments 534 and
37 special instructions in the Module and loader, respectively, using
INT3. The Monitor incorporates the minimal functionality of the
NP-SEAM loader (v1.5.00) to load the P-SEAM loader binary with
appropriate page table mappings.

https://github.com/KRoverSystems/TDXplorer

A System Framework to Symbolically Explore Intel TDX Module Execution

The emulation environment is created using KVM, with 64 MB
of its guest physical memory reserved for the SEAM range (64-128
MB GPA) and 1 GB TD memory region (TDMR) allocated at (1-2 GB
GPA range). TDXplorer emulates four LPs. The Module is installed
via the SEAMLDR. INSTALL SEAM call, issued to the P-SEAM loader
once per LP, completing in 3.69 ms. We follow Intel’s instructions
[10, 22] and Canonical TD suite [29] to initialize the platform (121.8
ms) and create two TDs, each taking 42.43 ms.

7.2 Functional Coverage in TDX Emulation

Currently, our TDX emulation supports a total of 54 SEAM/TD
calls?: 38 out of 66 SEAM calls and 16 out of 21 TD calls. Figure 9
shows the supported SEAM/TD calls grouped according to Intel-
defined TDX functionality categories.

TD Memory/SEPT Management
TDX Platform Management.

TD Virtual Processor Management
TD Runtime Management

TD Creation

TD Measurement

TD Migration

Platform Memory Management

13/14

2/21

TD Virtual Processor Management
TD/Platform Data RD/WR

TD Memory/SEPT Management
TD Measurement

TD Migration

TD Partitioning

(b)

Figure 9: Number of (a) SEAM calls and (b) TD calls supported
under each key TDX functionality in the current prototype.

Supported and Tested Functionality. We provide support for a
wide array of SEAM and TD calls across key functionalities essential
for the meaningful analysis of the Module, including, but not limited
to, TDX platform management, TD creation, vCPU, memory, and
SEPT management, as well as general runtime management of
TDs. For instance, under TDX platform management, we support
eight out of ten SEAM calls (See Figure 9 (a)) used by the VMM for
the initial setup and configuration of the TDX Module, memory
regions and logical processors. The two SEAM calls in this category,
used for Module shutdown and update, are currently unsupported
due to the high context preparation efforts they require. For a
supported call, emulation support means that we can execute the
SEAM/TD call and have tested its behavior under various success
and failure conditions. Leveraging this support, we have tested and
validated a wide range of functional use cases across the life cycle
of the Module and TDs, following Intel’s specifications [24, 25]
and the Canonical TD suite [29]. Furthermore, TDXplorer remains
compatible with future TDX Module versions, assuming the TDX
architecture remains unchanged.

Emulation Support for SEAM/TD calls. Supporting a SEAM
or TD call typically involves implementing the necessary emula-
tion support, including handling special instructions, executing

ZFurthermore, three of the four SEAM calls provided by the P-SEAM loader for the
VMM to install the Module and query information are also supported.

CCS 25, October 13-17, 2025, Taipei, Taiwan

prerequisite calls to establish the correct Module and TD states,
and preparing the appropriate input arguments and/or data struc-
tures for the target call. For example, we currently support the
TDG.SERVTD.WR TD call, which allows a service TD to write to a
metadata field of a target TD. To correctly issue this call, the ana-
lyzer function must sequentially execute several SEAM/TD calls:
initialize the platform and the Module, create and build the ser-
vice TD, create the target TD, bind the service TD to the target
TD, launch the service TD, and finally emulate the specified TD
call from the service TD with all necessary input arguments. In
this example, by implementing the emulation support for all these
preceding calls, we have achieved support for the TDG. SERVTD.WR
TD call.

Unsupported Functionality. In TD migration, only the SEAM
calls related to service TD binding (associating a service TD with a
target TD) and the TD calls for accessing target TD metadata are
supported. Our emulation software does not support SEAM calls
involved in the other TD migration workflows due to their com-
plexity. The four platform memory management calls are currently
unsupported due to high data and context-preparation efforts, but
can be supported in future work. TD partitioning is not supported,
as our TDX emulation does not cater to the semantics of the nested
virtualization of TDs. Some TD measurement-related calls are only
partially supported because they involve the SEAMOPS instruction.
Specifically, our emulation does not cover certain leaf functions of
SEAMOPS due to the lack of documentation on their functionality
and the inherent difficulty of emulation. Most other unsupported
SEAM and TD calls require high context preparation efforts, but our
emulation architecture is designed to support them in the future.

7.3 Identified Issues and Inconsistencies

Our dynamic testing in TDXplorer, followed by manual analysis, led
to the accidental discovery of a stack canary bug in the Module [11].
It was uncovered during the TDX platform initialization sequence
while testing TDH. SYS.LP.INIT on multiple logical processors. It
causes all but one logical processor to incorrectly pick and use the
same non-random value as their canary. Intel’s TDX Module team
confirmed the bug and acknowledged that it was already known
internally.

Furthermore, our symbolic execution and subsequent analysis
uncovered minor documentation issues [12-14], stemming from in-
consistencies between the documentation and the Module’s current
behavior.

7.4 Performance Experiments

We conduct four sets of experiments to evaluate TDXplorer’s per-
formance. The first set uses seeded symbolic execution to measure
the per-instruction execution overhead. Second, we assess the effi-
ciency of path exploration during symbolic execution. Thirdly, we
compare native execution performance under TDXplorer with that
of a TDX-enabled server. Finally, we measure the memory footprint
of TDXplorer.

7.4.1 Symbolic execution. We symbolically execute 20 SEAM/TD
calls from start to return, using seeded mode with symbolic inputs
that include SEAM/TD call arguments, Module’s data, or both. The
number of instructions executed per call ranges from 787 to 43,919,

CCS 25, October 13-17, 2025, Taipei, Taiwan

resulting in symbolic execution times between 27 ms and 1239 ms
per call. The average per-instruction execution cost varies between
0.028 ms and 0.087 ms. Detailed results are provided in Table 1. Each
API call encounters 6-20 special instructions that are emulated by
the Agent. In seeded mode, the interpreter invokes the constraint
solver (Z3) to evaluate branch predicates based on the provided
seed. Each solver invocation takes approximately 0.214 ms, with 0
to 41 such calls per SEAM/TD call. Additionally, there is a one-time
solver initialization cost of 1.7 ms for each API call.

Total | IE | Exec. time (ms)
SEAM call/ TD call ins. tot. | Total | Per ins.
TDH.SYS.INIT 1314 353 45 0.034
TDH.SYS.LP.INIT 2302 649 97 0.042
TDH.SYS.CONFIG 3392 583 142 0.042
TDH.SYS.KEY.CONFIG 731 251 64 0.087
TDH.SYS.TDMR.INIT 33465 | 6839 944 0.028
TDH.MNG.CREATE 3518 906 137 0.039
TDH.SYS.INFO 2709 402 199 0.073
TDH.VP.INIT 4695 1043 169 0.036
TDH.MEM.SEPT.ADD 6314 1399 197 0.031
TDH.VP.ENTER 3357 770 111 0.033
TDH.SERVTD.BIND 7586 1572 270 0.036
TDH.SERVTD.PREBIND 2812 | 650 120 0.043
TDG.MEM.PG.ATTR.RD 2996 717 126 0.042
TDG.MEM.PG.ATTRWR 3144 744 129 0.041
TDG.MEM.PG.ACCEPT 3767 | 861 119 0.032
TDG.MR.REPORT 5874 | 796 311 0.053
TDG.SYS.RD 2026 535 95 0.047
TDG.SYS.RD.ALL 43919 | 8125 1239 0.028
TDG.VM.READ 803 322 27 0.033
TDG.VP.INVEPT 787 311 42 0.053

Table 1: Results from performance evaluation of seeded exe-
cution. "IE total" refers to the number of interpreted instruc-
tions. The prefixes "TDH" and "TDG" stand for SEAM call
names and TD call names, respectively.

7.4.2 Path exploration. We conduct four path exploration tests on
four API calls, where input arguments or selected Module states
are symbolized. Using a depth-first strategy, TDXplorer explores
all feasible execution paths within each API call handler. Results
are summarized in Table 2. In total, TDXplorer explores 233 unique
paths across the four tests. The number of instructions per path
varies widely from a few hundred to a few thousand. During each
path exploration, the interpreter calls the Z3 constraint solver to de-
termine branch satisfiability. Across all four tests, constraint solving
dominates the runtime, accounting for 86.53%-91.81% of the total
execution time per API call. Each path performs memory writes
that are confined to 2-6 unique 4KB pages, which are backed up
using TDXplorer’s copy-on-write mechanism to preserve memory
state across paths.

7.4.3 Native execution and special instruction emulation. We mea-
sure native execution times for 10 SEAM calls on both TDXplorer
and a TDX-enabled server. On average, SEAM calls execute in 41.1

10

Pansilu Pitigalaarachchi and Xuhua Ding

of Ins. Time | %Z3
SEAM call/TD call Paths | per path | tot.(s) | Cost
TDH.SYS.LP.INIT 11 359-2031 1.55 86.53%
TDH.SYS.CONFIG 25 349-3392 7.20 86.94%
TDH.MNG.CREATE 9 398-1034 1.14 88.15%
TDG.MEM.PG.AT.RD 188 850-2134 | 139.7 | 91.81%

Table 2: Path exploration statistics. The Z3 cost corresponds
to the cost of constraint solving.

us on the server (ranging from 21 us to 167 ps), while the same
calls in TDXplorer take 413 ps on average (ranging from 361 ps to
464 us). While TDXplorer incurs roughly a 10x slowdown due to
TDX emulation as compared to executions on a TDX server, it is
acceptable from the analysis perspective because it is a tiny frac-
tion of the total symbolic execution time per path (a few hundred
microseconds vs 100+ milliseconds). We also evaluate the cost of
special instruction emulation by measuring the round-trip time for
handling INT3 trap; the Agent intercepts the trap, emulates the
instruction and resumes Module execution via IRET. Each emulated
special instruction costs 2.9 us, including trap and resume.

7.4.4 Memory consumption. We measure the memory utilization of
TDXplorer during symbolic execution of TDG.MEM. PAGE.ATTR.WR
TD call. TDXplorer explores 12 paths in 2.43 seconds, with the
longest path consisting of 2281 instructions. The results are shown
in Figure 10. The peak virtual memory usage is approximately
278 MB, which includes the memory allocated for the emulation
environment (VM). The peak RAM footprint is around 77 MB and
remains stable over time.

H h
250 $!
o i i
Z 200 | !
& i !
© 150 ! --e-- TDXplorer's memory that is currently in RAM ';
i { - Total virtual memory allocated |
5 100 i :
QE) *’ e eee- e : ‘.=
= 50 VA 2 i
/ N
01 #=% }

Time

Figure 10: Memory usage of TDXplorer during symbolic path
exploration. The time axis indicates the start and end of the
execution.

7.5 Faithfulness Tests

The faithfulness experiments are to show that the Module’s exe-
cution and the symbolic analysis outcomes from TDXplorer are
faithful to the Module’s execution on real hardware. Namely, the
replay of test cases produces the expected outcome in real-life ex-
ecutions. We run the Canonical TD suite [29] to create a TD on
a TDX-enabled server equipped with an Intel(R) Xeon(R) GOLD
5520+ processor (56 CPUs, clock 800 MHz - 4.0 GHz), 256 GB of
RAM and 3.5 TB of disc. Both the host and the TD run Linux kernel
version 6.8.0-1013-intel running Ubuntu 24.04.1 LTS. We develop

A System Framework to Symbolically Explore Intel TDX Module Execution

a kernel module on the server to issue SEAM calls of our choice
and to intercept the VMM’s SEAM calls, as well as another module
inside the TD to issue TD calls of our choice. Monitoring their
arguments and return values allows us to maintain consistency in
the TDX state between the server and the emulation environment.

Faithfulness verification is a challenging open problem. As it
lacks an off-the-shelf tool to systematically verify the correctness
and accuracy of an emulation, we performed manual verification
on selected test cases. These represent our best effort toward faith-
fulness assessment. Of the dozen faithfulness tests conducted, we
elaborate on two in this section.

7.5.1 Test 1: MK-TME KeyID Validation in TD Creation. In this
experiment, we test whether the symbolic analysis over the Mod-
ule’s KeyID validation during TD creation is consistent with the
execution on the server. During preparation, we clone the server’s
MK-TME configuration to TDXplorer so that both systems use the
most significant 6 bits of the page physical address as the KeyID.
In addition, we initiate the Module in both environments with a
global KeyID set to 32.

Symbolic Analysis. Our analyzer function issues TDH.MNG. CREATE,
the SEAM call that creates a TD. The function symbolizes the call’s
KeyID argument, which is supposedly set by the VMM. We de-
note the symbol as a. The function drives TDXplorer to explore
all paths symbolically. During the execution, the Module reads the
Module’s Key Ownership Table (KOT) at its offset 8a. Located at
0xffffa00300221080, KOT stores KeyID states and ownership. To
support the symbolic read, the analyzer returns an 8-byte sym-
bolic KOT entry represented as kote. At the end of exploration,
TDXplorer emits the path constraint:

(32 < & < 63) A (kote[0] = 0)

where kote[0] is the least significant byte of kote for all paths
indicating a successful handling, i.e., no error returned to the VMM.
Replay in TDXplorer. We solve the path constraint to obtain
two concrete values: @ = 33 for the success path and a = 0x8000
for failure paths. Note that the constraint kote[0] = 0 requires that,
in the Module’s state before handling the SEAM call, the lowest
byte of the KOT entry for « is 0. Our dynamic analysis using
TDXplorer shows that all the entries of the Module’s KOT satisfy
this constraint, except for KeyID = 32, which is the global KeyID.
As expected, the replay in TDXplorer shows that: (i) for @ = 33 the
SEAM call succeeds with return code 0; (ii) for & = 0x8000 the call
fails with return code 0xc000010000000000 indicating an invalid
KeyID argument. To further validate the constraint’s correctness,
we also replay the call with & = 32, which results in a return code
0xc000082000000000 indicating that no free KOT entry is found.
Replay on TDX Server. Using the aforementioned host kernel
module, we issue TDH.MNG.CREATE on the server with the same
three concrete KeyID values. The SEAM call return codes received
by the VMM in three executions are the same as the correspond-
ing ones in TDXplorer, confirming the accuracy of our symbolic
execution and emulation in this experiment.

3 According to the Module’s code, it means the corresponding KeyID value is free.

11

CCS 25, October 13-17, 2025, Taipei, Taiwan

7.5.2 Test 2: Validating SEPT Creation and GPA Mapping. We test
whether the creation of the SEPT tree and the GPA mapping in
TDXplorer are consistent with the SEPT states on the TDX server.
TD SEPT state creation in TDXplorer. Following the Canonical
TD suite [29] and TDX ABI specification [24], we build a TD in TDX-
plorer. To create the SEPT tree, we first issue the TDH.MNG. ADDCX
SEAM call to create the root SEPT page (PML5). We follow the build
process and then issue a sequence of TDH.MEM.SEPT.ADD SEAM
calls to add SEPT pages at the appropriate levels, constructing the
TD SEPT tree shown in Figure 11.

Index 0 o 3 J PD 4‘*“[} Secure Pages
510 PT GPA range:
PMLS PML4 PDPT| 20i—+— 0xffc00000-0xffdff000

Figure 11: TD SEPT tree created to map 512 secure pages in
the 2M GPA range at 0xffc00000.

We then issue 512 TDH.MEM. PAGE . ADD SEAM calls to map 2MB
of guest physical memory at GPA 0xffc00000, attaching 512 se-
cure 4 KB memory pages to the SEPT tree. Subsequently, we use
TDH.MEM. SEPT.RD SEAM calls to read SEPT entries at different lev-
els for specific GPAs. We record the return values and returned data
(SEPT entry architectural contents, SEPT level and state). Specifi-
cally, we issue 3 SEAM calls to query the mapped PML5, PML4 and
PDPT indexes, followed by 512 calls to read all PTEs in the PD page
and another 512 calls to read entries in the PT mapped to PD index
510. All SEAM calls succeed with return code 0.

PTEs Mapping a SEPT Page. For all PTEs mapping a lower-level
secure EPT page, the returned data are: (i) level matches the queried
SEPT level. (ii) PTE state = 0x84 (NL_MAPPED), indicating the SEPT
entry maps a private GPA range accessible by the guest TD. (iii)
Architectural contents = 0x7, indicating the read, write and execute
permissions.

Free PTEs. For the 510 free PTEs on the PD page, the returned
data are: (i)level = 1, corresponding to the SEPT level 1 (PD page). (ii)
PTE state = 0 (FREE), indicating no GPA mapping. (iii) architectural
contents = 0x8000000000000000, the expected value for free PTEs.

Leaf Level PTEs. For all 512 PTEs on the PT page, the returned

data are: (i) level = 0, indicating the SEPT level 0 (PT page). (ii) PTE
state = 0x4 (MAPPED), indicating the secure EPT entry maps a private
GPA page accessible by the guest TD. (iii) architectural contents
include the physical address of the mapped secure page and indicate
a leaf-level PTE mapping with read, write and execute permissions.
For example, the PTE at index 511, which maps 0x4021f000, returns
0x80000000402101f7.
Replay on TDX Server. We follow the Canonical TD suite [29] to
build a TD on the server. Using our kernel module, we replicate the
same SEPT tree by issuing the same sequence of TDH.MEM. SEPT. ADD
SEAM calls as in TDXplorer. We subsequently issue the same
TDH.MEM. SEPT.RD calls to query each SEPT PTE state. The returned
PTE levels, states and architectural contents match those observed
in TDXplorer, confirming the correctness of SEPT tree creation and
secure page mapping in TDXplorer.

CCS 25, October 13-17, 2025, Taipei, Taiwan

8 Case Studies
8.1 Case I: Symbolic Modeling of SEPT Creation

Creation of SEPT consists of a sequence of steps to add new EPT
pages to the paging hierarchy. In each step, the Module walks
through the SEPT from the root to the proper parent page and
modifies the PTE corresponding to the mapped GPA. Correctness
of this process is crucial to security and reliability. However, it is
error-prone because SEPT walking and PTE location both depend
on the GPA argument used in TDH.MEM. SEPT . ADD.

In this case study, we symbolically analyze how the Module
handles TDH.MEM. SEPT. ADD issuance, which adds four SEPT pages
at four levels (PML4, PDPT, PD, PT), respectively, with the focus on
the impact on the Module’s execution from the GPA argument set
by the VMM. We aim to answer the following two questions. (We
do not analyze the root level (i.e., PML5) creation since its execution
does not vary much with arguments.)

Q1. Given the GPA, does the Module correctly walk the SEPT to
locate the parent page and its PTE, and attach the new page by
updating the PTE correctly?

Does a failed SEAM call leave any undesired modifications on
the SEPT after its completion? For instance, the parent page
is modified; when the SEAM call is returned with an error,
modifications on the PTE are not reverted.

Q2.

The Module’s SEPT walk with an unconstrained symbolic GPA
argument leads to symbolic read operations, an open problem in
the symbolic execution literature. Since a GPA in the SEAM call
consists of five indexes for each SEPT level, symbolic index bits
will be used as offsets to read a PTE from the page. Even though
such read operations can be handled by using techniques similar to
[44], it is infeasible to locate the next level page without concrete
PTE content, which effectively stalls the SEPT walking.

We cope with the challenge based on the fact that the root is at a
concrete location and the observation that different index bits in the
GPA should be used for different SEPT levels without overlapping.
Hence, we divide the whole experiment into four phases corre-
sponding to four EPT levels. Phase 1 explores the SEAM call that
adds a Level-4 page (i.e., PML4) with an unconstrained symbolic
GPA. Phase 2 explores the SEAM call that adds a Level-3 page (i.e.,
PDPT) using a symbolic GPA with its Level-5 index being seeded
with a concrete value. The symbolization-seeding cycle continues
for Level-2 and Level-1 pages added in phases 3 and 4. We hence
avoid the intractable problem of dereferencing a symbolic address
because of the seeded values. Furthermore, the four phases of explo-
ration, like an induction proof, collectively validate the Module’s
behavior on the condition that the constraints produced in symbolic
exploration for each level do not involve irrelevant symbols in the
GPA argument.

8.1.1 Analyzer Function. We develop an analyzer function with
282 lines of C/C++ code following the approach above. Figure 12
depicts its workflow. Before starting to explore the SEAM call, the
analyzer backs up the symbolic state and the CPU register state. At
the end of the exploration, the Monitor restores the saved state and
memory pages to prepare for the next level of exploration. Next,
we elaborate on two implementation-relevant issues.

12

Pansilu Pitigalaarachchi and Xuhua Ding

Analyzer function

Module
 Xpu 5= 1 PMLa, PR
Monitor L=3, GPA=s1||s2. L

!
PMLs " PDPT " BT

L=2, GPA=X, Xpp5= 81, Xppi 4= 52

Figure 12: Workflow of the analyzer function. Solid arrows
are TDH.MEM. SEPT. ADD calls with concrete-level numbers and
symbolic GPAs. Dash arrows are concrete invocations adding
four pages shown as dashed boxes, with s1, s2 being the seeds.

Handling Symbolic Access. When encountering an instruction
accessing n bytes at a symbolic address, the analyzer function is
called back by the interpreter to handle the situation. The analyzer
function checks whether the symbolic address is in the form of
B+ f(x) where B is a concrete 48-bit virtual address and f(x) repre-
sents a logical and/or bit operation of symbol x followed by scalar
multiplication. If not, it terminates the current path. Otherwise,
the instruction is treated as accessing n bytes in an object with the
base address B. The analyzer creates a shadow buffer of n bytes
with metadata B, n. For a write operation, it emulates the operation
upon the shadow buffer; for a read operation, it returns a new n-
byte symbol representing the buffer content to the interpreter for
instruction emulation.

For the subsequent access of n’ bytes from a symbolic address
of the form B’ + g(x), the analyzer function checks whether [B’ +
g(x), B" + g(x) + n’] is within [B + f(x), B + f(x) + n]. If so, the
corresponding n” symbolic bytes from [B + f(x), B+ f(x) + n] are
returned for a read instruction or are updated for a write access. If
the two intervals are found to have no overlap, the analyzer creates
a new shadow object with independent symbolization. In all other
situations, including undecidable relations, it simply terminates the
current path.

Address Semantics. Since the symbolic execution is in the virtual
address space, it is crucial for the analyzer to acquire VA semantics
to reason about the Module’s behavior. For static VAs used by the
Module, the needed semantics are extracted from the Module’s bi-
nary. For dynamic VAs, i.e., the KeyHole regions, TDXplorer tracks
the Module’s mapping and un-mapping operations of KeyHoles
as explained in Section 5.4. The analyzer retrieves the KeyHole
state of the current LP so that it can identify the Module’s virtual
addresses for mapped SEPT pages. To validate the correctness of
SEPT walking, the analyzer also needs the physical addresses of
SEPT pages in order to compare them with the PTEs in their parent

pages.

8.1.2 Results and Discussions. After creating two TDs running
on two LPs in the emulation environment, we run the analyzer
function on top of the TDXplorer Monitor targeting one of the TDs.
The exploration of adding PML4 generates 2 successful paths and
18 failure paths. For each of the other three levels’ exploration, 19
paths are produced, with one successful path and 18 failed ones.

Q1. In all four phases, the modified PTE address is the sum of the
concrete VA of the parent mapping the new SEPT page and 8 times
a symbolic expression representing a bit segment of the symbolized
GPA X. The expression occurring in each phase is in the second

A System Framework to Symbolically Explore Intel TDX Module Execution

column of Table 3. Our manual verification confirms that the bit
segments in use are correct with respect to the new page’s level.
The PMLS5 index is constrained to 3 bits and the Module attaches
a new PML4 page at indexes 0 to 7 in the PML5 page, which is
consistent with the TDX base specification [25]. We also confirm
that the parent page’s VA is mapped to the PA of the page added in
the prior phase, which implies that the located PTE is on the correct
parent page. In all paths where the SEAM call returns successfully,
we find that the symbolic 8 bytes that are created upon reading the
symbolic PTE address are all replaced with the physical address of
the new page specified in TDH.MEM. SEPT. ADD. Hence, it confirms
that the correct physical address is indeed written to the correct PTE.
Additional details about the complete sequence of the Module’s
accesses to the parent EPT page, access sizes and path constraints
are in Tables 4, 5, 6 and 7.

Added | Modified parent Constraints on Index
page SEPT index: parent SEPT index: | range
PML4 | X _bits(48,56) ii;ﬁ;ﬁfé ;6): 0;) {0-7)
PDPT | X _bits(39,47) - {0-511}

PD X _bits(30,38) - {0-511}
PT X _bits(21, 29) {0-511}

Table 3: Range of modified parent SEPT index in 4 phases.

Q2. Across four phases, there are 64 out of 72 SEAM call failed paths
leaving a modified parent page upon call return. Table 8 reports the
path constraints and symbolic expressions left on the page where
pte represents the symbolic 8 bytes in the affected PTE. The table
shows that the two constraints that appear in these paths are about
the 11th bit of the PTE. It also shows that all the modifications are
upon the 52nd bit of the PTE.

In fact, bits 11 and 52 of a SEPT entry represent the entry-lock
and host-priority flags, which are used for synchronization among
LPs according to TDX [15, 25]. The two path constraints reflect
whether the Module’s lock acquisition is successful or failed. For
paths in which the lock acquisition is unsuccessful, the observed
modification (i.e., the second bts %rax, (%rcx)) is to flip the host-
priority bit from 0 to 1. It is a valid operation as it requests the
priority. For paths in which the lock is successfully acquired, the
observed modification (i.e., btr %rax, (%r14)) is to reset the host-
priority bit from 1 to 0. The change is also valid as it indicates the
priority is no longer needed. Hence, all modifications left on the
PTE after the SEAM call conform to TDX functionality.

8.2 Case II: Analyzing KeyHole Mappings

8.2.1 Analysis Task. We are interested in finding out if the KeyHole
mapping takes place correctly. Specifically, we aim to answer the
following questions.

Q1. Is an existing matching mapping always reused? Is the returned
KeyHole consistent with the matching mapped KeyHole index?

Q2. In all successful paths, is the reference count of the KeyHoles up-
dated correctly? Specifically, is the correct KeyHole’s reference
count incremented by exactly one?

13

CCS 25, October 13-17, 2025, Taipei, Taiwan

Since the Module’s behavior depends on the KeyHole state, which is
updated at runtime, we combine TDXplorer’s dynamic binary analy-
sis with symbolic execution to reason about the Module’s behavior.

8.2.2 Analyzer Function. The analyzer function consists of 302
lines of C/C++ code. We specifically target the Module function
map_pa_with_memtype(KeyID_pa, mapping_type, caching
_type). It is part of the Module’s core functionality, which dy-
namically maps a secure page during the Module’s execution. The
KeyID_parefersto the < KeyID | page address >, the mapping_type
specifies if writes are allowed via the mapping and caching_type
indicates the PTE caching type.

Start of symbolic analysis. Two TDs are created and launched
in the emulation environment. Symbolic execution starts once the
Module reaches the desired runtime state within the target API call
handler. The Analyzer configures a hardware debug register, setting
a breakpoint at the start of map_pa_with_memtype() and emulates
the TDG.MEM.PAGE.ATTR.RD TD call from one TD. The TD call, re-
questing the GPA mapping and attributes of a TD private page,
is dispatched for native execution. When the Module traps at the
target function, the Agent hands control to the analyzer. The ana-
lyzer retrieves the three concrete function arguments KeyID_pa_in,
mapping_type_in, caching_type_in from the RDI, RSI and RDX
and saves them for result validation. To extract the mapped KeyHole
VA and stop the path once the map_pa_with_memtype() returns,
the analyzer directly reads the Module’s runtime stack to obtain
the function return address as follows:

ret_adr = +(unsigned long+) (current_rsp);

Initial symbolization. To achieve symbolic reasoning and enable
path exploration, we symbolize selected contents in the runtime
KeyHole state. The analyzer retrieves the fixed starting VA of the
tdxmod_keyhole_entry_t array in the current KeyHole state. The
array is indexed by the KeyHole index, where each KeyHole entry
in this array stores metadata indicating whether the corresponding
4 KB KeyHole is currently mapped to a KeyID_pa. If it is, the en-
try also stores its mapping_type, caching_type and the reference
count ref_count. Using its struct definition, the analyzer locates
and symbolizes the KeyID_pa and ref_count elements in each
of the 128 KeyHole entries in the array. The CPU and symbolic
states are then backed up and the analyzer starts symbolic path
exploration.

Points of analysis. When the Module creates a new mapping,
the Agent intercepts the Module’s KeyHole edit page write and
flags the event for the use of the analyzer function. The analyzer
treats the paths without a new KeyHole mapping as paths with an
existing KeyHole mapping matching the target function’s input
arguments. Before a path is completed, the analyzer intervenes
only if an error is reported by the interpreter. For errors, it records
the path constraint and instructs the interpreter to begin the next
path. At the end of each path, identified when the RIP points to
the recorded ret_adr, the analyzer constructs a series of symbolic
predicates and uses the constraint solver to gather data for symbolic
reasoning as follows.

Results validation: Modified KeyHole entry. To identify the
modified KeyHole entry, the analyzer compares the saved symbolic
ref_count from the start (rs) with that at the end (r¢) of a path. For

CCS 25, October 13-17, 2025, Taipei, Taiwan

Pansilu Pitigalaarachchi and Xuhua Ding

PML5 address A'cc. Read expr./val. Write expr./val. Path constraint
size at access

B+ f'(x) 8 epte - Co
B+ f'(x) 8 epte epte | (1 << 11) Co

, (epte | (1 << 11))
B+ f'(x) 8 epte | (1 << 11) A~ (1 << 52)) Co ACy

, (epte | (1 << 11))]
B+ f'(x) 8 Al~ (1 << 52)) Co ACy
B+ f'(x) 8 - 0x800000004003c807 CoANC2 AC3

B+f'(x)+1 1 0xc8 - CoNCa2 ACs3

B+ f'(x) 8 0x800000004003c807 | 0x800000004003c007 CoNCa2 AC3

Co : {(x_bits(51,63) = 0)A
(x_bits(3,47) = 0)}
Cy : epte_bit(11) =0
C3 : {0x1€00000000002c0A
(epte | (1 << 11)) A (~ (0x1 << 0x34))
= 0xe0000000000000 }

B = PML5 base VA = 0xffffa00200105000, f (x) = 8 X ((x > (48))&O0x1fT), x: GPA

Table 4: Accesses to the Modified PML5 when adding a new PML4 and related path constraint at each access instance. B refers to
the concrete VA of the updated PML5 page. f’(x) provides the symbolic address offset. epte(initial symbolic value of the EPT
entry). x is the SEAM call argument-GPA, symbolized at the start.

PML4 address A'cc. Read expr./val. Write expr./val. Path constraint
size at access
B+ f'(x) 8 epte - Co
B+ f’(x) 8 epte epte | (1 << 11) Co
, (epte | (1 << 11))
B+ f'(x) 8 epte | (1 << 11) A~ (1 << 52)) Co ACy
, (epte | (1 << 11)) i
B+ f'(x) 8 A~ (1 << 52)) Co ANCy
B+ f’(x) 8 - 0x800000004003d807 CoANC2 ACs
B+f'(x)+1 1 0xd8 - CoANCa2 ACs
B+ f'(x) 8 0x800000004003d807 | 0x800000004003d007 CoNCa2 ACs3

Co : {(x_bits(51,63) = 0)A
(x_bits(3,38) = 0)}
C1 : x_bits(48,56) = 1
Cy : epte_bit(11) =0
C3 : {0x1€00000000002c0A
(epte | (1 << 11)) A (~ (0x1 << 0x34))
= 0xe0000000000000}

B = PMLS5 base VA = 0xffffa00200106000, f’(x) = 8 X ((x > (39))&0x1ff), x: GPA

Table 5: Accesses to the Modified PML4 when adding a new PDPT and related path constraint at each access instance. B refers
to the concrete VA of the updated PML4 page. f’(x) provides the symbolic address offset. epte(initial symbolic value of the EPT
entry). x is the SEAM call argument-GPA, symbolized at the start.

PDPT address A.cc. Read expr./val. Write expr./val. Path constraint
size at access

B+ f’(x) 8 epte - Co
B+ f’(x) 8 epte epte | (1 << 11) Co

, (epte | (1 << 11))
B+ f'(x) 8 epte | (1 << 11) A~ (1 << 52) Co ACy

, (epte | (1 << 11))]
B+ f'(x) 8 Al~ (1 << 52)) Co ACy
B+ f’(x) 8 - 0x800000004003e807 CoANCa AC3

B+ f'(x)+1 1 0xe8 - Co NCa2 ACs3

B+ f'(x) 8 0x800000004003e807 | 0x800000004003e007 CoANC2 AC3

Co : {(x_bits(51,63) = 0)A
(x_bits(3,29) = 0)}
C1 : x_bits(48,56) = 1 A x_bits(39,47) = 0
Cy : epte_bit(11) =0
C3 : {0x1€00000000002c0A
(epte | (1 << 11)) A (~ (0x1 << 0x34))
= 0xe0000000000000}

entry). x is the SEAM call argument-GPA, symbolized at the start.

B = PMLS5 base VA = 0xffffa00200107000, f’(x) = 8 X ((x > (30))&0x1ff), x: GPA
Table 6: Accesses to the Modified PDPT when adding a new PD and related path constraint at each access instance. B refers to
the concrete VA of the updated PDPT page. f’(x) provides the symbolic address offset. epte(initial symbolic value of the EPT

a given KeyHole index i, it checks if the final ref_count is symbolic.
If so, it extracts the expression r. and evaluates the predicate r = r!
using the constraint solver. If false, it checks if r} = ri + 1 with
the constraint solver. If true, the KeyHole entry is identified as

14

having the correct ref_count increment of 1. For a KeyHole with
a symbolic ref_count at the start, it can only be concrete at the
end if the KeyHole was previously unmapped (i.e. rs = 0) and gets
mapped in the current path. In such cases, the analyzer validates

A System Framework to Symbolically Explore Intel TDX Module Execution

CCS 25, October 13-17, 2025, Taipei, Taiwan

Acc. . Path constraint Co : {(x_bits(51,63) = 0)A
PD address size Read expr./val. Write expr./val. at access (x_bits(3,20) = 0)}
B+ f'(x) 8 epte - Co C1 : x_bits(48,56) = 1 A x_bits(30,47) =0
B+ f’(x) 8 epte epte | (1 << 11) Co Cy : epte_bit(11) =0
te] (1 << 11)) C3 : {0x1€00000000002cOA
B+ f’ 1<<11 (ep A
G| 8| epte] (1<<11) A~ (1 << 52)) ConCa (epte | (1 << 11)) A (~ (0x1 << 0x34))
, (epte | (1 << 11))] = 0xe0000000000000}
B+ f'(x) 8 A~ (1 << 52)) Co ANCo
B +f’ (x) 8 - 0x800000004003f807 CoANCy ANC3
B+f'(x)+1 1 0xf8 - CoANCy ANC3
B+ f'(x) 8 0x800000004003f807 | 0x800000004003f007 CoANCy ANC3

B = PML5 base VA = 0xfffa00200108000, f (x) = 8 X ((x > (21))&0x1f), x: GPA
Table 7: Accesses to the Modified PD when adding a new PT and related path constraint at each access instance. B refers to the
concrete VA of the updated PD. f’(x) provides the symbolic address offset. epte(initial symbolic value of the EPT entry). x is the

SEAM call argument-GPA, symbolized at the start.

Seq. Instruction Read expression Write expression Path constraints
1 bts %rax, (%rcx) pte pte | (1 < 11) . _
2 | bts %rax, (%rcx) pte | (1< 11) (pte | (1 < 11)) | (1 < 52) pte_bit(11) = 1 busy lock
1 bts %rax, (%rcx) pte pte | (1 < 11)
2 btr %rax, (%rcx) pte | (1 < 11) (pte | (1 < 11))&(~ (1 <« 52)) pte_bit(11) = 0 free lock
3 btr %rax, (%r14) | (pte| (1 < 11))& ~ (1 < 52) | ((pte]| (1 < 11))& ~ (1 < 52)& ~ (1 < 11)

Table 8: Sequence of SEPT updates in SEAM call failed paths. The memory operand of the instruction points to the PTE. pte is
the initial symbolic PTE value. The], ‘&’ and ‘<’ represent the binary operations "OR", "AND" and "left shift", respectively.

that the ref_count is set to 1 and, if so, identifies the KeyHole entry
as having the correctly updated ref_count. If the ref_count is
incorrectly updated or the ref_counts of multiple KeyHole entries
are updated in the same path, an error is reported.

Results validation: KeyHole, matching the input args. Once
the modified KeyHole entry index (k) is determined above, the
analyzer extracts its corresponding symbolic KeyID_pay. It uses
the Module’s struct definitions to read as the Module does and
record the concrete mapping_type (M) and caching_type (Cy).

mapping_type = ((tdxmod_keyhole_state_t*)
keyhole_state_va)->keyhole_array[k].
is_writable;

caching_type = ((tdxmod_keyhole_state_tx)
keyhole_state_va)->keyhole_array[k].
is_wb_memtype;

To check if the current path has used the existing KeyHole mapping
in KeyHole index k, the analyzer creates the predicate in (1):

1)

This predicate is conjoined with the current path constraint. If
evaluated to false, it indicates that the path has matched an existing
mapping in KeyHole index k with KeyID_pa_in and the Module has
updated the ref_count in the matching KeyHole entry. Finally, the
analyzer verifies if the mapping_type and the caching_type also
match by comparing the My and Cy. with the saved input arguments
and reports an error if they are not matched.

For paths with a new KeyHole mapping creation, the conjoined
constraint above must be evaluated to be true. This is because there

KeyID_pa_in # KeylD_pay

15

can not be a predicate in the current path constraint indicating that
the KeyID_pa of KeyHole entry k matches the input arguments
of the analyzed function. Such a predicate would only exist if the
mapping for index k had already been created, which is not the
case when a new mapping is created at index k.

VA assigned for the secure page. According to TDX, the base
VA mapping a page at KeyHole index k is given by equation (2):

@

where B is the base VA of the Module’s KeyHole region and LP_ID
is the current logical processor ID. The analyzer computes the ex-
pected concrete VA for the mapped KeyHole index k and compares
it with the return value of map_pa_with_memtype() extracted
from the RAX register when the path ends at the function return
(ret_adr).

VA = B+ (LP_ID X 128 X 4096) + (k X 4096)

8.2.3 Results. The path exploration covers 180 paths, with 62 paths
ending in error (via UD2 instruction). Note that the interpreter does
not dispatch the UD2 for native execution. In these error paths, the
final predicate added to the path constraint: 7% + 1 = 0, identifies an
overflow scenario. Post-mortem analysis shows that the r expres-
sion from the i-th KeyHole entry equals 7 + 1. Therefore, the error
occurs because the symbolic execution explored a path where the
updated ref_count overflows.

Q1. Out of the 118 paths reaching the function return, 62 paths
use existing mappings and 56 paths create new PT mappings. The
analyzer’s end-of-path analysis shows that when the path constraint
indicates a match with a KeyHole entry, the returned VA matches
the KeyHole VA derived from equation (2), using the corresponding

CCS 25, October 13-17, 2025, Taipei, Taiwan

matching KeyHole index. In all such paths, no PT mappings are
created.

Q2. All 118 paths have one KeyHole entry with updated ref_count.
In all paths that do not create new mappings, the updated ref_count
entry belongs to the matching KeyHole entry in the path constraint.
In these paths that use an existing mapping, the final ref_count
is symbolic and always incremented by 1. In contrast, in paths that
create a new mapping, the final ref_count becomes concrete and
is set to 1.

8.3 Lessons Learned

The two cases demonstrate that TDXplorer can be applied to gener-
alize and reason about the Module’s behavior, a basic functionality
of symbolic execution. Moreover, they attest to the benefits of flex-
ibly combining symbolic execution with commonly used dynamic
analysis techniques such as hardware breakpoint, single-stepping,
introspection and instrumentation. Owing to the unification of
all these operations at the binary level, the analyst enjoys greater
flexibility in controlling the Module execution and access to richer
and more accurate runtime data than what both source-code level
analysis and intermediary representation-based symbolic execution
can provide.

The cases also show that symbolically exploring the TDX Mod-
ule faces the roadblocks of reading or writing to symbolic addresses.
Although these are well-known open problems in the symbolic exe-
cution literature, their obstruction is more evident as it is common
for the Module to use the SEAM/TD call argument to locate data
objects, leading to symbolic accesses. We observe that TDXplorer
is likely to be more conducive to finding a solution than existing
work because its architectural feature allows for nimble and easy
memory modeling. It is in our future work to tackle the symbolic
access challenge.

In terms of code coverage, Case 1 reaches 328 out of 687 basic
blocks, while Case 2 covers 44 out of 61. It is important to emphasize
that our cases are not designed with the goal of maximizing code
coverage. The uncovered blocks are primarily a result of branches
that depend on concrete data rather than the symbolized argument.

9 Conclusion

In summary, TDXplorer is a system framework that faithfully runs
the TDX Module in an emulation environment and symbolically
explores its execution. A user’s analyzer function on TDXplorer can
not only apply dynamic analysis techniques to shape and retrieve
the Module’s runtime state, but also harness symbolic execution to
generalize and reason about the Module’s behavior, as evidenced
by our two case studies.

Acknowledgments

We are grateful to anonymous reviewers for their constructive com-
ments and suggestions. This research is supported by the National
Research Foundation, Singapore, and the Cyber Security Agency
of Singapore under its National Cybersecurity R&D Programme
(Proposal ID: NCR25-DeSSMU-0001). Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of the National

16

Pansilu Pitigalaarachchi and Xuhua Ding

Research Foundation, Singapore, and the Cyber Security Agency
of Singapore.

References

[1] AMD. 2024. SEV Secure Nested Paging Firmware ABI Specification.
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-
docs/specifications/56860.pdf. Accessed: 2024-05-22.

[2] Arm. 2021. Arm CCA Security Model 1.0. https://developer.arm.com/
documentation/DEN0096/A_a.

[3] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57,2 (2014), 74-84.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track. 41-46.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 209-224.

[6] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P). 380-394.

[7] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. 2020. KOOBE:
Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vulner-
abilities. In Proceedings of the 29th USENIX Security Symposium. 1093-1110.

[8] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2023. Intel tdx
demystified: A top-down approach. Comput. Surveys (2023).

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E plat-

form: Design, implementation, and applications. ACM Transactions on Computer

Systems (TOCS) 30, 1 (2012), 1-49.

Intel Corporation. 2023. Browse Intel TDX Documentation. Retrieved April

25th, 2024 from https://www.intel.com/content/www/us/en/developer/tools/

trust-domain-extensions/documentation.html

Intel Corporation. 2024. Issue 8: Canary validation in tdh_sys_Ip_init(). Retrieved

August 21st, 2025 from https://github.com/intel/tdx-module/issues/8

Intel Corporation. 2025. Issue 15: Input validation in SEAM/TD Calls for reading

metadata. Retrieved August 21st, 2025 from https://github.com/intel/tdx-module/

issues/15

Intel Corporation. 2025. Issue 20: Incorrect output operand values on TD Call failure

due to invalid RAX. Retrieved August 21st, 2025 from https://github.com/intel/tdx-

module/issues/20

Intel Corporation. 2025. Issue 21: Incorrect output operand values on SEAM Call

failure due to invalid RAX. Retrieved August 21st, 2025 from https://github.com/

intel/tdx-module/issues/21

Intel Corporation. 2025. TDX Module. https://github.com/intel/tdx-module.

Accessed: 2025-04-13.

Intel Corporation. 2025. TDX Module Build Instructions (tdx_1.5 branch). https:

//github.com/intel/tdx-module/blob/tdx_1.5/BUILD.md. Accessed: 2025-04-13.

Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.

{FIE} on firmware: Finding vulnerabilities in embedded systems using symbolic

execution. In 22nd USENIX Security Symposium (USENIX Security 13). 463-478.

Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexander Bulekov,

Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francillon, Long Lu, Nick Gregory,

et al. 2021. Sok: Enabling security analyses of embedded systems via rehosting.

In Proceedings of the 2021 ACM Asia conference on computer and communications

security. 687-701.

Anthony C. J. Fox, Gareth Stockwell, Shale Xiong, Hanno Becker, Dominic P.

Mulligan, Gustavo Petri, and Nathan Chong. 2023. A Verification Methodology

for the Arm® Confidential Computing Architecture: From a Secure Specification

to Safe Implementations. Proc. ACM Program. Lang. 7, OOPSLA1, Article 88

(April 2023), 30 pages. doi:10.1145/3586040

Frama-c. 2023. Frama-c Software Analyzers. Retrieved November 8th, 2023 from

https://frama-c.com/

Google LLC and Intel Corporation. 2023. Intel TDX Security Review Report.

https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf. Ac-

cessed: 2025-04-14.

Intel Corporation. 2024. Intel TDX Module: KVM Upstream Branch. https:

//github.com/intel/tdx/tree/kvm-upstream. Accessed: 2025-04-14.

Intel Corporation. 2024. Intel® Trust Domain CPU Architectural Extensions.

Available at: https://www.intel.com/content/www/us/en/developer/tools/trust-

domain-extensions/documentation.html.

Intel Corporation. 2024. Intel® Trust Domain Extensions Module Architecture Appli-

cation Binary Interface Specification. Available at: https://www.intel.com/content/

www/us/en/developer/tools/trust-domain-extensions/documentation.html.

Intel Corporation. 2024. Intel® Trust Domain Extensions (TDX) Base Specification.

Available at: https://www.intel.com/content/www/us/en/developer/tools/trust-

domain-extensions/documentation.html.

[10

[11

[12

[13

[14

[15

[16

(17]

[18

[19

[20

[21

~
5,

[23

[24

[25

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://developer.arm.com/documentation/DEN0096/A_a
https://developer.arm.com/documentation/DEN0096/A_a
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://github.com/intel/tdx-module/issues/8
https://github.com/intel/tdx-module/issues/15
https://github.com/intel/tdx-module/issues/15
https://github.com/intel/tdx-module/issues/20
https://github.com/intel/tdx-module/issues/20
https://github.com/intel/tdx-module/issues/21
https://github.com/intel/tdx-module/issues/21
https://github.com/intel/tdx-module
https://github.com/intel/tdx-module/blob/tdx_1.5/BUILD.md
https://github.com/intel/tdx-module/blob/tdx_1.5/BUILD.md
https://doi.org/10.1145/3586040
https://frama-c.com/
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://github.com/intel/tdx/tree/kvm-upstream
https://github.com/intel/tdx/tree/kvm-upstream
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html

A System Framework to Symbolically Explore Intel TDX Module Execution

[26] Zheyue Jiang, Yuan Zhang, Jun Xu, Xingian Sun, Zhuang Liu, and Min Yang.

2023. AEM: Facilitating Cross-Version Exploitability Assessment of Linux Kernel

Vulnerabilities. In Proceedings of the IEEE Symposium on Security and Privacy

(S&P). 588-603.

Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and

Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In Proceedings

of the Network and Distributed System Security Symposium (NDSS). 1-17.

Daniel Kroening and Michael Tautschnig. 2014. CBMC-C Bounded Model

Checker: (Competition Contribution). In Tools and Algorithms for the Construction

and Analysis of Systems: 20th International Conference, TACAS 2014, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,

Grenoble, France, April 5-13, 2014. Proceedings 20. Springer, 389-391.

Canonical Ltd. 2024. Intel confidential computing - TDX. https://github.com/

canonical/tdx Accessed: 2025-04-09.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

building customized program analysis tools with dynamic instrumentation. ACM

SIGPLAN Notices 40, 6 (2005), 190-200.

Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. Basesafe: Baseband sanitized

fuzzing through emulation. In Proceedings of the 13th ACM conference on security

and privacy in wireless and mobile networks. 122-132.

[32] Microsoft. 2024. Cornelius. https://github.com/microsoft/Cornelius. Accessed:
2025-04-14.

[27

[28

™~
X

[30

(31

[33] Microsoft and Intel Corporation. 2024. Microsoft and Intel joint security
review of Intel TDX 1.5. https://community.intel.com/t5/Blogs/Products-and-
Solutions/Security/Intel-and-Microsoft-joint- security-review- of-Intel- TDX- 1-
5/post/1615189. Accessed: 2025-04-14.

[34] Petar Paradzik, Ante Derek, and Marko Horvat. 2025. Formal Security Analysis

of the AMD SEV-SNP Software Interface. IEEE Transactions on Dependable and
Secure Computing (2025), 1-18. doi:10.1109/TDSC.2025.3528737
[35] Pansilu Pitigalaarachchi, Xuhua Ding, Haiqing Qiu, Haoxin Tu, Jiaqi Hong, and
Lingxiao Jiang. 2023. KRover: A Symbolic Execution Engine for Dynamic Kernel
Analysis. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (CCS °23). 2009-2023.
[36] Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU: Compilation-based
symbolic execution for binaries. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). 1-18.
Dyninst Project. 2021. Dyninst. Retrieved September 8th, 2023 from https:
//github.com/dyninst/dyninst/tree/v12.0.0

[37

17

(38]

[39

[40

(41

=
&

[43

[44

[45

[46

[47]

(48]

[49]

[50]

CCS 25, October 13-17, 2025, Taipei, Taiwan

Matthew J Renzelmann, Asim Kadav, and Michael M Swift. 2012. SymDrive:
Testing drivers without devices. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 279-292.

Microsoft Research. 2021. Z3. Retrieved September 8th, 2024 from https://github.
com/Z3Prover/z3/tree/z3-4.8.15

Benedict Schliiter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi, and Shweta
Shinde. 2024. {HECKLER }: Breaking Confidential {VMs} with Malicious Inter-
rupts. In 33rd USENIX Security Symposium (USENIX Security 24). 3459-3476.
Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. 2012. Automated
Analysis of Diffie-Hellman Protocols and Advanced Security Properties. In 2012
IEEE 25th Computer Security Foundations Symposium (2012-06). 78-94. doi:10.
1109/CSF.2012.25

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. (State of) The Art of War: Offensive Techniques in
Binary Analysis. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P). 38-157.

Intel® Architecture Memory Encryption Technologies. 2024. https://cdrdv2-
public.intel.com/679154/multi-key-total-memory-encryption-spec-1.4.pdf.

Haoxin Tu, Lingxiao Jiang, Jiagi Hong, Xuhua Ding, and He Jiang. 2024. Con-
cretely mapped symbolic memory locations for memory error detection. IEEE
Transactions on Software Engineering (2024).

Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,
Bingchang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From Proof-of-
Concept to Exploitable (One Step towards Automatic Exploit Generation). In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). 1914-1927.

weggli rs. 2023. weggli. Retrieved November 8th, 2023 from https://github.com/
weggli-rs/weggli

Luca Christopher Wilke, Florian Sieck, and Thomas Eisenbarth. 2024. TDX-
down: Single-Stepping and Instruction Counting Attacks against Intel TDX. In
Proceedings of ACM Conference on Computer and Communications Security.
Isaku Yamahata. 2022. Allowing an Intel TDX Module to Run Without SEAM.
https://www.youtube.com/watch?v=wNq6shZCYm0. KVM Forum 2022, Intel
Corporation.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2020. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings

of the 27th USENIX Security Symposium. 745-761.
Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti, et al. 2014.

AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares.. In NDSS, Vol. 14. 1-16.

https://github.com/canonical/tdx
https://github.com/canonical/tdx
https://github.com/microsoft/Cornelius
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Intel-and-Microsoft-joint-security-review-of-Intel-TDX-1-5/post/1615189
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Intel-and-Microsoft-joint-security-review-of-Intel-TDX-1-5/post/1615189
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Intel-and-Microsoft-joint-security-review-of-Intel-TDX-1-5/post/1615189
https://doi.org/10.1109/TDSC.2025.3528737
https://github.com/dyninst/dyninst/tree/v12.0.0
https://github.com/dyninst/dyninst/tree/v12.0.0
https://github.com/Z3Prover/z3/tree/z3-4.8.15
https://github.com/Z3Prover/z3/tree/z3-4.8.15
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1109/CSF.2012.25
https://github.com/weggli-rs/weggli
https://github.com/weggli-rs/weggli
https://www.youtube.com/watch?v=wNq6shZCYm0

	Abstract
	1 Introduction
	2 Prerequisites
	2.1 TDX Architecture
	2.2 Internals of The TDX Module

	3 Related Work
	4 Overview
	4.1 Design Considerations
	4.2 System Architecture
	4.3 An Example of Analysis Workflow

	5 SEAM Emulation Environment
	5.1 Physical Memory
	5.2 Address Spaces
	5.3 Special Instruction Emulation
	5.4 MK-TME Emulation
	5.5 Logical Processor Emulation
	5.6 SEAM Call and TD Call

	6 The TDXplorer Monitor
	6.1 Accessing Emulation Environment
	6.2 Symbolic Interpreter
	6.3 Analyzer Function

	7 Implementation and Evaluations
	7.1 Prototype
	7.2 Functional Coverage in TDX Emulation
	7.3 Identified Issues and Inconsistencies
	7.4 Performance Experiments
	7.5 Faithfulness Tests

	8 Case Studies
	8.1 Case I: Symbolic Modeling of SEPT Creation
	8.2 Case II: Analyzing KeyHole Mappings
	8.3 Lessons Learned

	9 Conclusion
	Acknowledgments
	References

